黒川 洵子(KUROKAWA Junko)
薬学部薬学科(生体情報分子解析学分野) 教授
薬学研究院(生体情報分子解析学教室) 教授(兼務)


1993年3月 東京大学薬学部卒業
1998年3月 東京大学大学院薬学系研究科博士課程修了










日本毒性学会(編集委員会 Editorial Board)
Biophysical Society
American Heart Association


1998年 ジョージタウン大学 ポスドク
1999年 コロンビア大学 ポスドク
2003年 コロンビア大学 リサーチアソシエート・海外特別研究員
2004年 東京医科歯科大学難治疾患研究所 助教
2006年 東京医科歯科大学難治疾患研究所 助教授
2016年 静岡県立大学薬学部 教授


2007年 日本薬学会学術奨励賞
2007年 American Heart Association The Mervin Marcus Award Finalist
2009年 文部科学大臣表彰 若手科学者賞
2015年 第20回計算工学講演会ベストペーパーアワード(共同受賞)


(財)医薬品情報担当者教育センター試験委員会 委員
JiCSA (Japan iPS Cardiac Safety Assessment) 参加研究員
国立大学法人東京医科歯科大学 非常勤講師
GECAD-EU (Gender specific mechanisms in coronary artery disease in Europe) アドバイザー


1. A distribution analysis of action potential parameters obtained from patch-clamped human stem cell-derived cardiomyocytes. J Pharmacol Sci, 131, 141-145、2016
2. Oxidative stress induced ventricular arrhythmia and impairment of cardiac function in Nos1ap deleted mice. Int Heart J, 05:57, 2016
3. Novel cystine transporter in renal proximal tubule identified as a “missing partner” of cystinuria-related SLC3A1 (rBAT). Proc Natl Acad Sci U.S.A., 113, 775-780、2016
4. High-Fat Diet Increases Vulnerability to Atrial Arrhythmia by Conduction Disturbance via miR-27b. J Mol Cell Cardiol, 90, 38-46, 2015
5. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Rep, 5, 1128-1142, 2015
6. Enhancement of Spontaneous Activity by HCN4 overexpression in Mouse Embryonic Stem Cell-derived Cardiomyocytes - a Possible Biological Pacemaker. PLoS ONE, 10, e0138193, 2015
7. Screening system for drug-induced arrhythmogenic risk combining patch clamp and a heart simulator. Science Advances, 1, e1400142, 2015
8. Aromatase knockout mice reveal an impact of estrogen on drug-induced alternation of murine electrocardiography parameters. J Toxicol Sci, 40, 339-348, 2015
9. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: correlation and complementarity with extracellular electrophysiology. J Mol Cell Cardiol, 77, 178-191, 2014
10. Effects of a hERG activator, ICA-105574, on electrophysiological properties of canine hearts. J Pharmacol Sci, 121, 1-8, 2013.
11. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovascular Research, 95, 419-29, 2012
12. Circulating KCNH2 Current-Activating Factor in Patients with Heart Failure and Ventricular Tachyarrhythmia. PLoS One. 6, e198897, 2011
13. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: A Simulation Study. PLoS Comput Biol 6, 29, e1000658, 2010
14. Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel. J Biol Chem, 284, 6014-6020, 2009
15. Acute effects of estrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol (Lond.), 586, 2961-2973, 2008
16. Progesterone regulates cardiac repolarization through a non-genomic pathway: an in vitro patch-clamp and computational modeling study. Circulation, 116, 2913-2922, 2007
17. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a non-genomic pathway of sex hormones. Mol Pharmacol, 70, 1916-1924, 2006
18. Non-transcriptional regulation of cardiac repolarization currents by testosterone. Circulation, 112, 1701-1710, 2005
19. Regulatory actions of the A kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U.S.A., 101, 16374-16378, 2004
20. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U.S.A., 100, 2122-2127, 2003
21. Requirement of a macromolecular signaling complex for  adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295, 496-499, 2002
22. TEA+-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled IKs channels. J Gen Physiol, 117, 43-52, 2001
23. 1,5-benzothiazepine binding domain is located on the extracellular side of the cardiac L-type Ca2+ channel. Mol Pharmacol, 51, 262-268, 1997

1. ヒトiPS細胞を用いた医薬品の心毒性評価.In: iPS細胞の最新技術開発、技術情報協会、東京 in press, 2016
2. iPS細胞を用いた抗不整脈薬の心毒性評価.In: 不整脈2015.井上博(編)メディカルレビュー社、東京 p33-40, 2015
3. Remodeling of potassium channels in cardiac hypertrophy In: Molecular Mechanisms of Cardiac Remodeling. Jugdutt BI, Dhalla NS (Eds): Springer, New York, p31-45, 2013
4. Sex and gender aspects in anti-arrhythmic therapy. In: Sex and Gender Difference in Pharmacology. Handbook of Experimental Pharmacology 214, Rigitz-Zagosek V (Ed): Springer-Verlag, Germany. p237-263, 2012
5. Chapter 18: KCNQ1/KCNE1 macromolecular signaling complex: channel microdomains and human disease. In: Cardiac Electrophysiology from Cell to Bedside. Zipes DP, Jalife J (Eds): Saunders, Philadelphia, pp187-194, 2009
6. 古川哲史,黒川洵子 (2007) II-5章 イオンチャネルの構造と不整脈の分子医学.In: 先天性心疾患を理解するための臨床心臓発生学.山岸敬幸,白石公(編)メジカルビュー社,東京, pp188-194.
7. 性ホルモンとイオン電流.In: QT間隔の診かた・考えかた.有田 眞(監),犀川哲典,小野克重(編)医学書院,東京, pp59-74, 2007
8. AKAPs as Antiarrhythmic Targets? In: Handbook of Experimental Pharmacology. Clancy CE, Kass RS (Eds): Springer-Verlag, Germany. pp221-234, 2006
9. Chapter 17: KCNQ1/KCNE1 macromolecular signaling complex: channel microdomains and human disease. In: Cardiac Electrophysiology from Cell to Bedside. Zipes DP, Jalife J (Eds): Saunders, Philadelphia, pp143-150, 2004